Analysis of Infrastructure Cost and Reliability of
Architecture Patterns for Deploying a
Timetabling Application on Cloud

Sommer Harris, Jaelyn Ma, Meet Patel, Kshitij Nair, Niranjan Velraj, Michal Aibin Member, IEEE
Khoury College of Computer Sciences
Northeastern University, Vancouver, Canada
{harris.som | ma.du | patel.meet2 | nair.ks | velraj.n | m.aibin}@northeastern.edu

Abstract—There is no standardized way for businesses to deploy their application on Cloud. The suitable deployment strategy
depends on the type of application and the specific requirements of the business. In building a timetable application, we test five
deployment architectures and perform an evaluation based on metrics such as reliability factor and cost per month to determine which
one best suits our business requiring relatively high system reliability and a low-performance cost model. The result of our study shows
that out of our different architectures, the one most suitable for deploying the business app on AWS cloud deployment will be the
serverless architecture. This study may act as an example of how researchers may develop their own tests and metrics in other

business cases.

Index Terms—cloud deployment, microservices, timetabling.

1 PROBLEM INTRODUCTION

The timetable is such an important part of school function-
ing that some school administrators spend months or weeks
trying to timetable the curriculum using post it notes [1].
This directly affects institutions with multiple and varied
constraints in their timetabling. Since the onset of Covid-
19, educational leadership roles have changed dramatically
with one of the largest challenges being time manage-
ment given increasing demands [2]. Providing effective
timetabling solutions could return to these administrators
weeks or months of their valuable time. There are few
standalone educational timetabling software products like
aSc Timetables [3] and Lantiv [4] [5]. Over decades, these
applications have attempted accommodating the growing
constraints, but in [6], it was found that there is a gap
with timetabling software being accessible or usable only
by experts.

The long term vision of this project is to further bridge
the gap between research and industry by developing
a cloud based timetable application based on the novel
timetabling solution developed in Hoshino 2022 [1]. Cloud-
based solutions can offer a range of features with varying
costs, which makes it imperative to explore and find a
balance between features that meet our use case in the
most cost-effective manner. To address accessibility and a
larger number of consumers, we also explore in this paper
various scalability strategies in cloud computing and use
metrics (discussed in Section 4) to determine a cost-effective
solution.

In this paper, we compare different microservice ar-
chitecture patterns on cloud provider AWS by monitoring
and measuring specific metrics that are important for our

timetabling software. We compare various architectures us-
ing our own cloud based timetabling application. We aim to
find the best deployment pattern using evaluation metrics
that suits the business needs of a timetabling application.

In the remainder of this paper, we will first review
works related to assessing cloud deployment architectures,
then provide a formulated problem statement that includes
the architectures we plan to test, as well as our metric of
assessment. Next, we will show the preliminary system
design for our application, and explore how it was modified
for deployment for each of the architectures. Lastly, we will
outline our simulation setup, and share our results, analysis,
and concluding remarks.

2 RELATED WORKS

This section reviews research on advantages and assessment
of the cloud based solution as compared to standalone ap-
plications. We also review the significance of architecture in
cloud deployment and the use of microservices. We discuss
AWS services for deployment, and open ended nature of
metrics for evaluating architectures. We end this section by
further clarifying the gap we cover in our approach.

In building an end-to-end pipeline application for a
scheduling software, we considered two different ap-
proaches pertaining to the environment of the applica-
tion. First approach would be a desktop-based application
running on the client-side that would be locally installed
and second would be a cloud-based approach where the
software would run on remote servers accessible to users
via a web browser. We draw comparisons between the two
approaches in Appendix A ! [7]-[11].

1. Appendix A displays architecture feature analysis in a table.

Through a comparative study, Rajendran and Swamy-
nathan 2016 generated a list of attributes that impact
cloud service performance. They also state that choosing
a provider is a multidimensional problem and users must
find an intelligent way to select the best service based
on their app’s unique needs. They outline functional and
nonfunctional metrics that can be used to consider providers
[12].

One of the most important factors in cloud service
performance is Architecture. It is crucial to availability,
consistency, and scalability of cloud applications [13]. A
monolithic architecture has vertical scale benefits, but a
single change in the system will impact all users [14]. In
a large on-demand application, the system must be able to
handle the load of multiple users without downtime [14].
With Microservices, the services each fulfill a single function
in the application [15]. Microservices scale well because
they can horizontally scale and are loosely coupled so are
fault-tolerant and isolated [14]. Although microservices are
often recommended for large-scale applications, incorporat-
ing microservices to smaller applications will bring ease to
future scaling [14].

There are several patterns to deploy a microservice
where each pattern comes with its own tradeoffs and cost
structure. [16] Traditionally, When deploying microservices
on servers, the responsibility to manage and scale is on de-
velopers. Serverless framework allows deployment without
managing infrastructure, where resources are allocated on
demand by cloud providers without any user overhead.

Existing comparisons of the cloud providers generally
tend to favor AWS for its broader offerings and faster
response times [17] [18]. As the biggest cloud service
provider, AWS provides multiple solutions for microser-
vices deployment, such as EC2, Amazon Elastic Container
Service (Amazon ECS), Amazon Elastic Kubernetes Ser-
vices (Amazon EKS) and AWS Lambda. [19] Amazon EC2
as a Infrastructure-as-a-Service(laaS) provider deploys mi-
croservices on virtual machines [20]; Amazon ECS pro-
vides Docker container management services [21]; EKS
deploys containerized application while provisioning Ku-
bernete management services [22]; AWS Lambda deploys
microservices in serverless computing technology [23].

There are no standard metrics that can be used by all
applications to evaluate a cloud architectural pattern [24]
[25]. The evaluation parameters vary depending on the
application being deployed and the way it is hosted and
identifying the most suitable cloud provider requires a good
understanding of the application architecture. Leitner et. al,
2016 present an approach to developer tooling that models
cloud deployment costs for microservices, and also claim
that more studies are needed that explore what cost related
questions developers are trying to answer [24]. Saraswat
and Tripathi, 2020 compare and analyze parameters of cloud
service providers AWS, Microsoft and Google. Ultimately,
they claim the choice on how to deploy to the cloud will
depend on technical and business needs of each particular
company. Rajendran and Swamynathan, 2022 analyze pa-
rameters for cloud service providers also state that there is
an absence of standards and frameworks for assessing cloud
services and that a key step is that clients must identify and
evaluate what is necessary to their application.

2

Timetabling software is different from most other hosted
applications because generating a timetable is processor
intensive. The scale and load are seasonal as there may be a
greater number of users during summer compared to other
periods and microservices should scale up/scale down ac-
cordingly. Considering the unique demands of timetabling
applications, we felt that comparing the cost-to-performance
ratio of deploying it using different architectural patterns
will be necessary to identify the best hosting solution.

To further clarify the gap we are exploring, we hope to
share how we modeled our particular application needs to
develop our own cloud deployment tests, as a step toward
contributing to the knowledge gap on how to select the
best way of deploying microservice models and developing
metrics that meet our particular business needs. We focus
on exploring the best architecture pattern for hosting mi-
croservices for our timetable scheduling application based
on proper metrics to performance.

3 PROBLEM STATEMENT

Timetabling applications to date have been mostly algo-
rithm centric and developed as a single unified unit, de-
scribed as monolithic architecture. When applications with
monolithic architectures grow too large, scaling becomes
a challenge because individual services cannot be scaled
in isolation [26]. The development speeds become slower
as any change to one component would require testing of
the whole application as they are in a unified codebase.
Also, if there is an error in one module, it might affect the
availability of the entire application [26].

As referenced in the related works section, microservice
architecture solves these issues when the application has to
scale. It is an architectural method that emphasizes modu-
larity by using independently deployable modules rather
than a single unified application. This reduces coupling
between different modules because each microservice be-
comes an independent unit of development, deployment
and versioning. This is particularly crucial for timetabling
applications as it gives developers the freedom to use
different programming languages for the front end of the
application and the actual algorithm.

Even though microservices have become the standard
practice in most software architectures, there are multiple
ways they can be deployed. We discuss monolithic architec-
ture, as well as different deployment patterns of microser-
vices below:

3.1 Pattern 1 : Monolithic

This monolithic architecture is a traditional model of soft-
ware program which generally has one large codebase that
couples all parts of the application together, as shown in Fig.
1. Sometimes this architecture is preferred due to ease of
installations, more straightforward configuration, and less
cross-service debugging [27].

3.2 Pattern 2 : One Host, Multiple Services

In this pattern, as shown in Fig. 2, all the service instances
are deployed on a single host on multiple ports. The host
can either be a Virtual Machine or a physical server [16].

Y
,"‘ﬁ
E r ‘7'3
B — @
.

e =/

Host Machine

Fig. 1. Pattern 1: Monolithic Architecture

By——of —| &2

Client Load Balancer I_

Host Machine

Fig. 2. Architecture Pattern 2: One Host, Multiple Services

This approach has certain benefits and drawbacks. Scaling
up would just require us to copy the service to another host
and start it [28] and it is also relatively fast to startup as it has
very little overhead. The resource utilization is also fairly
efficient as all the services share the server and its OS [28].
One drawback of this approach is that there is no isolation
of the service instances as we cannot limit the resources each
instance uses [16].

3.3 Pattern 3 : One Host, One Service (Virtual Images)

e
Service A

Host Machine

E Sarv\ce B

Hnst Machine

[P
L@ Servim%
| —

Host Machine

Bp—ofp—02

Client Load Balancer APl Gateway

Fig. 3. Architecture Pattern 3: One Host, One Service

In this pattern, instead of having all the services in a
single host, we package each service in its own host [29]. As
shown in Fig. 3, each host machine will run a single service
packaged in form of virtual images. This allows greater
isolation between services and overcomes the drawback of
services competing for common resources. Deployment in
this pattern is reliable and robust, as each service is inter-
operable, immutable and easy to monitor. One drawback of
this approach is that deployment is slow as virtual images
contain operating system and is slower to deploy. [16]

3.4 Pattern 4 : One Host, One Service (Containers)

0
D

7

l_ Service A

Host Machine

ofs —¥2—mm &
Egﬂ; [N senvice B

API Gateway

)

Client Load Balancer Container

Host Machine

(P e
(N7

Host Machine

Fig. 4. Architecture Pattern 4: One Host, One Service, with Container

In this pattern, similar to Pattern 4, we have one service
running on one host. The service environment inside the
host is completely isolated by running the service inside a
container [30]. While running services packaged as virtual
images works, they are heavy to deploy as they contain
operating system along with the code. As shown in Fig. 4,
a container wraps the service and all its dependencies but
does not contain operating system. It shares the kernel with
the host machine which makes deployment extremely fast
[31].

3.5 Pattern 5 : Serverless Deployment

Function A ey

©]
Function B
Function C

Fig. 5. Architecture Pattern 5: Serverless Deployment

£
i

API Gateway

=,

Client

All the patterns discussed above require manual cloud
infrastructure management after deployment [32]. For ex-
ample, if there is a sudden spike in the number of users
for the timetable service, then we need to manually scale
up the number of servers it is deployed in to accommodate
the increased demand. Scaling up and scaling down servers
is needed to manage costs and also to ensure that the
functions are accessible. This is particularly important for
our timetabling application because of the seasonal load and
there will be a lot of schools using the timetable service
in the summer before the school term starts and very less
load in other periods. To manage the cloud infrastructure
for scaling up and scaling down, companies have a team
of developers who need to take time off from developing
new features to ensure that the application is always acces-
sible in the cloud. To avoid this, the Serverless architecture
pattern provides a self-maintaining, scalable, and reliable
approach to deployment that does not require any man-
ual involvement in infrastructure management [32]. Once
the application is deployed in serverless architecture, the
responsibility of managing the cloud infrastructure falls on
the cloud provider and not on the developers as shown in
Fig. 5. One drawback of this approach is limited runtime of
each service and cold starts.

4 EVALUATION

Each microservice architecture pattern is different and has
its own set of drawbacks. We will compare them and see
which is suitable and meets the criteria for timetabling app.
We need a common evaluation metric to compare these
different architectural patterns. We believe the important
parameters to compare are the cost per user and the reliabil-
ity of the system. All cloud providers charge based on the
number of hits received by the server. More hits imply that
we have more users of our application. To compute the cost
per user, we divide the total cost incurred by the number of
users of our application. The system is said to be reliable if
it is always available to perform the services it is designed
for. Reliability is an important factor to consider because it
ensures that the application is available to the users when
they need it and there is no downtime. Reliability in cloud
computing is measured by comparing the failure rate of
all the components in the architectural pattern. To compute
the reliability factor, we will send n requests to the servers
and check how many of those requests are responded to
efficiently by the system. For example, if the single server
architecture is only able to respond to 5 out of 10 requests
within the stipulated time, the reliability factor will be 0.5
(5/10).

responded requests
reliability factor = P q

sent requests

The reliability factor should be high for serverless archi-
tecture and low for single-server architecture. Considering
these two factors, the evaluation metric we wanted to com-
pare will be:

total cost 1

FEvaluationMetric =

*
number of users reliability factor

In the future sections, we will try to identify the architec-
tural pattern and the cloud provider that yields the lowest
metric value.

5 SYSTEM DESIGN

To test the deployments, we developed a cloud-based Au-
tomated timetabling application that generates a master
timetable, as shown in Fig. 6, The front end of the appli-
cation is built with React. There are UI libraries to build
custom components in React with ease and has a Virtual
DOM that makes the rendering faster by updating the
content in the DOM [33]. The communication to the Backend
happens through REST APIs.

The Node.js server in the backend acts as the API
gateway. This is to conform with the facade design pat-
tern where the client communicates with a single server.
Node.js uses non-blocking and event-driven architecture
which makes it efficient and suitable for microservices [34].
This Node.js server interacts with both the timetable server
and authentication server for the required operations.

The Frontend input is an excel file with timetable struc-
ture and constraints. This is converted to a JSON object and
sent to the Python server that generates the timetable and
returns it as a JSON object. The server sends this response
to the frontend where it is displayed to the user. We used
MongoDB for our database. We used NoSQL, which better

S

(s
Master Timetable

)

Constraints

7]

)

<]
{op
(<D

j
@

. SDN SDN
[350n] request 50 reqUeSl
respons response

S

React

Frontend

........... lsgnl,
e

EE
>

respons

Backend
API
Gateway

Authentication Service Timetable Service

Fig. 6. Basic System Design

suited our needs due to its horizontal scalability, absence of
SQL normalization, and dynamic schema [35]-[37].

5.1

In our monolithic pattern, we run a single server on an EC2
instance. We adapt our basic system design to a monolithic
pattern by combining the functionalities from the authen-
tication server (runs on Node.js) and the Flask server to
our main Nodejs server, as shown in Fig. 7. We ran our
Python timetabling code (previously on the Flask server)
by spawning a child process from the main Node.js server,
and then called the Python code in the child process. This
approach was less straightforward than our basic system
design and, and not technology agnostic, so there may be a
better approach with other architectures.

Pattern 1 Deployment

@

Timetable & Authentication
Services

Host Machine - EC2 instance

Client

Fig. 7. Deployment Pattern 1: Monolithic

5.2 Pattern 2 Deployment

In a one-host-multiple-services pattern, system design of
this deployment pattern is very similar to our basic system

design. As shown in Fig. 8, we create an EC2 instance as
the host machine, and all services will be deployed and
run on a single host machine. There will be no overhead
communication since they are all inside of the same host
machine. In this deployment pattern we also adopt an
Application Load Balancer (ALB) in case of future scaling.
The ALB will route requests to the desired server.

(- ‘_\ Tlrnehib\e Service
0= :'

Client Load Balancer Proxy Sewer

Authenn:at\cn Service

Hast Machine - EC2 instance

Fig. 8. Deployment Pattern 2: One Host, Multiple Services

In the backend, we keep the Flask server and Node.js
server separate to generate timetable service and perform
authentication service respectively. We installed a Node.js
server that acts as an API proxy. Any incoming requests
would be intercepted by API proxy server and based on
the type of requests, it will forward them to the respective
services. Timetable service and authentication services listen
to a different port and communicate over the API proxy
server. Master timetable generated from timetabling service
and login token generated from authentication service will
be both stored in MongoDB database that is deployed to the
same EC2 instance.

5.3 Pattern 3 Deployment

In this pattern, each microservice will be deployed on
Amazon EC2 by creating a virtual instance for each of the
microservices. The EC2 instances use the t2.micro machines
running Amazon’s own distribution of Linux, AWS Linux.
The routing server, which is written in Node.js will act as
the API Gateway or the proxy server that communicates be-
tween the Authentication server and the Timetabling server.
For this deployment pattern, each host machine will have its
own image of the microservice that responds to a designated
feature required by the application. The client accessing the
tool will only communicate to the API-Gateway (Node.js)
server, which will make sure incoming requests are tok-
enized, thereby making the entire architecture a black-box.
The proxy server will also make sure each incoming request
is tokenized after properly being authenticated using a Mon-
goDB database before granting access to the time-tabling
service. In this way, each microservice is independently
deployed and remains scalable and responsive. This pattern
architecture in also illustrated in Fig. 9.

5.4 Pattern 4 Deployment

In this pattern, microservices will be deployed using con-
tainers that provides perfect environment for running small
independent services. Containers has the code, runtime, sys-
tem tools, system libraries and settings to run microservices.
For this pattern, each virtual host machine will contain a
single container running a single microservice, as shown

—

P—E

Timetable Service

(eee) _
N Host Machine - EC2 instance
By —of—F=
—=]
(58

Authentication Service

Client Load Balancer

Proxy Server

Host Machine - EC2 instance

Host Machine - EC2 instance

Fig. 9. Deployment Pattern 3: One Host, One Service

in Fig. 10. We will use Docker for building and managing
containers. As containers are independent unit of software
and does not contain overheads of operative system, they
can be deployed to any number of server relatively fast. As
the number of microservices grow, so will the containers.
It will become harder to manually manage the number of
container as the project grows.

Node
o
=
‘ '
icat

K8 Cluster

Fig. 10. Deployment Pattern 4: One Host, One Services (Containers)

We use Kubernetes - a open source container orches-
tration tool developed by Google to manage containerized
application. A Kubernetes cluster offers high availability
of containers, provides provisions for scalility and fault
tolerance. The most important component inside a cluster is
Nodes and Pods. Nodes are either the physical machine or
virtual machines. Pods are the smallest units of kubernetes
that provides a layer of abstraction over container and reside
inside a Node. In our architecture, each service will be de-
ployed inside a Node which will have Pods for application
code and database. Ingress component in Kubernetes acts
as load balancer. A client will send the request to ingress
which forwards the request to respective Pods. Kubernetes
cluster is deployed on Amazon Elastic Kubernetes Service
with Nodes running on EC2 instances.

5.5 Pattern 5 Deployment

In this pattern, the services are packaged and deployed on
a Serverless platform as serverless functions. The respon-
sibility of configuring and managing the host machines
falls on the cloud provider as they automatically assign
and scale the required number of machines to handle the
demand. Deploying in a serverless architecture requires us
to convert each of the servers to serverless functions that
are compatible to be deployed. There are two approaches to
deploying serverless functions in AWS. The first approach
is to create and deploy the serverless functions directly. This
can be done by exposing the services as modules which are

then hosted on the serverless platform. The other approach
is to convert these functions to container images and deploy
these container images as serverless functions. Deploying
the application as container images incur additional costs as
they have to be pushed in a private ECR (Elastic Container
Registry) repository for it to be accessible by the serverless
platform. For our analysis, we wanted to pick the route that
incurs a lower cost so we chose the former, as shown in Fig.
11.

[,

Timetable
Function
E ring Authentication
API Gateway Function
Function

Client

Fig. 11. Deployment Pattern 5: Serverless

For deploying the application as a serverless function,
we first converted the auth service and the timetable service
into serverless functions by exporting the server component
as a module. To access these functions, we wrapped these
modules using an API gateway so that we can send get
or post requests to the functions to perform the required
operations. In addition to that, we also converted the
Node js server, which acts as the proxy server, to a serverless
function so that the client has just a single server URL
to keep track of. This proxy server, along with the API
gateway, forms the API gateway function. This function
communicates with the other functions based on requests
from the client.

6 SIMULATION
6.1 Setup

We used JMeter tool to run our simulations and compute
the reliability factor based on the results for each of our
architectures. A test plan consisting of two end points is
used to simulate load on all architectural patterns. In this
test plan, the endpoint “Schedulett” is used for timetable
generation by timetable service and the endpoint “Login”
is used for signing a user in the platform by authentication
service. The simulation is ran in multithreaded environment
allowing to simulate load on both the endpoints parallelly.
For the simulation, we are sending a total of 1000 requests
to both the authentication service and the timetable service
to see how many of these requests are responded to in a
reasonable time. To account for the instability of the network
in access to these cloud deployments, we consider it a
successful response if the server is able to respond within
twice the average latency the server takes with less load.
We computed the average latency in ms by performing
both the schedule timetable and login operations with the
parameters of 1 thread (users) and a 100 iterations and
documented the results in TABLE 1.

We then multiplied this latency by two and set this as
our duration assertion (timeout) for the “Schedulett” and
“Login” services respectively. We then ran simulations with

TABLE 1
Average latency

Latency in ms

Pattern

Login Schedulett
Pattern1 302 750
Pattern2 257 512
Pattern3 253 544
Pattern4 151 410
Pattern5 1556 2740

TABLE 2

Successful Responses

Pattern Out of 500 Requests Total
Login Schedulett
Pattern1 4 331 335
Pattern2 106 28 134
Pattern3 500 21 521
Pattern 4 456 18 474
Pattern 5 496 495 991

5 threads (users) and 100 iterations each. We then counted
the number of successful responses out of the total requests
for both timetable and authentication service, which are
documented in TABLE 2. This information was used to de-
termine the reliability factor, using our formula mentioned
in the evaluation section.

We computed the cost using AWS pricing calculator.
Pattern 1, 2 and 3 are running on t2.micro EC2 Instance
with 1GB of memory, 1 vCPU and 8GB of storage and 1GB
data transferred both inbound and outbound. We get the
cost for these patterns by feeding the above mentioned con-
figuration to AWS pricing calculator, the results for which
are shown in TABLE 3. Pattern 4 uses t2.small instance
as that’s the minimum configuration required for running
Kubernetes cluster that allows deploying more than 4 Pods
in an instance and each Node reserves 80GB of storage. This
significantly increases the cost for this pattern. The cost for
Pattern 1-4 are dependent on the running time of instances
and the bandwidth transferred from them. However, for the
serverless architecture, the cost is computed by the total
number of requests and the time taken to process each
of these requests. We used the average latency previously
computed and a 1000 requests for the computation. The
costs computed using the AWS Pricing calculator takes into
account the number of users accessing the services as well.

TABLE 3
Successful Responses
(out of 500 requests each endpoint)

Pattern Login Schedulett Total(1000)
Pattern1 4 331 335
Pattern2 106 28 134
Pattern3 500 21 521
Pattern4 456 18 474
Pattern 5 496 495 991

TABLE 4
Evaluation Metric (lower is better)

Pattern Reliability =~ Cost/month Evaluation
factor (USD) Metric

Pattern1 0.335 9.27 27.67

Pattern2 0.076 9.27 69.18

Pattern3 0.521 42.86 82.27

Pattern4 0.474 147.37 310.91

Pattern5 0.991 22.52 22.73

TABLE 5

Normalized metric value (lower is better)

Pattern Normalized
Reliability Factor =~ Cost/month Evaluation
Factor (USD) Metric

Pattern1 0.335 1.018 3.041

Pattern2 0.076 1.018 7.602

Pattern3 0.521 1.089 2.091

Pattern4 0.473 1.343 2.833

Pattern5 0.991 1.046 1.055

6.2 Results

Once we have the reliability factor and the cost, we com-
puted the metric value (in TABLE 3). As the computed cost
already takes into account the number of users accessing the
service, we need not divide the cost again by the number of
users. Therefore, the metric value will be the product of cost
and the inverse of reliability factor.

The initial results in TABLE 3 emphasizes too much on
the cost as the cost matters a lot for the smaller companies.
For much larger companies, the reliability of service would
take a higher priority than the cost. To reduce the impact of
cost, we normalized it using an inverse logarithmic function
so that all the lower values of cost converges to a small
number, but the higher cost values are exponentially high.
These results are specified in TABLE 4.

6.3 Analysis

Pattern 1 (Monolith Architecture) is easy to maintain and
is extremely useful in the early stages of application de-
velopment when the number of users is not high. When
the number of users become higher, Monolith becomes less
reliable. The Pattern 1 is still more reliable than Pattern
2 (Multiple servers in 1 Host) because Pattern 1 does not
require any inter services communications. This additional
time, along with the fact that all services share the same
processing resources, makes Pattern 2 the least reliable.
Having just a single service running in a host improves
the reliability for Pattern 3 and Pattern 4 as the services
are not clashing for the same system resources. But this
improved reliability does not compensate for the increased
cost. For our use case, deploying using containers for Pat-
tern 4 seems like an over kill which can be inferred from
the high metric value for this pattern. Even though this
pattern seems like a bad option for our business need in
smaller companies, it can still be used by larger companies
where cost does not matter much. Using containers images
for the deployment makes it the easiest to scale. The higher

7

reliability of these patterns makes it a much better option
than Pattern 1,2 for larger companies as the metric value
indicates in TABLE 4.

Pattern 5 (Serverless architecture) seems to be the most
reliable as the deployments are scaled automatically to
handle the incoming requests. The cost for serverless is
not as high as unlike the other patterns, AWS Lambda
charges just for the time the function is actually running
and not for the entire duration the server is active. This
high reliability and an intermediate cost makes it the most
suitable option for our deployments. The only drawback of
using this architecture is that it has a lower timeout and high
latency than EC2 instances. As the higher latency is not a
factor of consideration for our business needs, based on our
results, Pattern 5 seems to be the most preferred deployment
pattern.

7 CONCLUSION

In this paper we explored five different architectures for
deploying a timetabling software on AWS to find the one
that best suits our business needs. For this purpose, we
developed a metric formula based on cost-per-performance
and reliability factors, and our goal was to find the architec-
ture that produced the lowest metric value in the simulation
plan. To yield the metric values, we ran simulations on each
deployment pattern with 5 threads and 100 iterations on
both of the endpoints. As the results of our simulation plan
show, Pattern 5, the serverless mode, has clear advantages
due to its high reliability and elastic cost per performance.
We believe this pattern is the best choice for timetabling
application businesses.

Our deployment simulations were performed on the
AWS platform, so the cost and reliability factors in our
metrics were limited to AWS infrastructure. If interested,
this approach can be applied to other cloud platforms to
explore the differences. On the other hand, our metrics and
simulation plans are designed to meet the business needs of
start-up timetabling companies that have smaller customer
bases. For companies with larger customer bases and func-
tional endpoints, factors such as scalability, maintainability,
and fault tolerance can be considered in the metric formula
and simulation plans can be redesigned accordingly.

REFERENCES

[1] Jameson Albers Richard Hoshino. Automating school timetabling
with constraint programming. 2022.

[2] Charalampous Constantia, Papademetriou Christos, Reppa Glyk-
eria, Athanasoula-Reppa Anastasia, and Voulgari Aikaterini. The
impact of covid-19 on the educational process: The role of the
school principal. Journal of Education, page 00220574211032588,
2021.

[3] ASC. Applied software
https://wwuw.asctimetables.com//home/features.

[4] Lantiv. Lantiv. [online]. Dostupno na: https://lantiv.com/, 2021.

[5] Capterra. Helping businesses choose better software since 1999.

[6] Jose J. Padilla, Saikou Y. Diallo, Anthony Barraco, Christopher]J.
Lynch, and Hamdi Kavak. Cloud-based simulators: Making sim-
ulations accessible to non-experts and experts alike. In Proceedings
of the Winter Simulation Conference 2014, pages 3630-3639, 2014.

[7] Lewis Golightly, Victor Chang, Qianwen Ariel Xu, Xianghua Gao,
and Ben SC Liu. Adoption of cloud computing as innovation
in the organization. International Journal of Engineering Business
Management, 14:184797902210939, 2022.

consultants.

(8]
(9]

[10]
(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

The importance of scalability in software design. Award-winning
App Development Company.

Lance Keene. The top 8 reasons why you should convert your
desktop app to a web app. ASPNET, .NET Developer, C Programmer,
FileMaker, React, SQL Server, DotNetNuke, Apr 2021.

Xenia Labis. Cloud based software vs desktop software. Syntactics
Inc., Jun 2021.

Rashmi Bhardwaj. Cloud app vs web app : Detailed comparison "
network interview. Network Interview, Jul 2022.

V Viji Rajendran and S Swamynathan. Parameters for comparing
cloud service providers: a comprehensive analysis. In 2016 Interna-
tional Conference on Communication and Electronics Systems (ICCES),
pages 1-5. IEEE, 2016.

Hulya Vural, Murat Koyuncu, and Sinem Guney. A systematic
literature review on microservices. In Osvaldo Gervasi, Beniamino
Murgante, Sanjay Misra, Giuseppe Borruso, Carmelo M. Torre,
Ana Maria A.C. Rocha, David Taniar, Bernady O. Apduhan, Elena
Stankova, and Alfredo Cuzzocrea, editors, Computational Science
and Its Applications — ICCSA 2017, pages 203-217, Cham, 2017.
Springer International Publishing.

Grzegorz Blinowski, Anna Ojdowska, and Adam Przybylek.
Monolithic vs. microservice architecture: A performance and scal-
ability evaluation. IEEE Access, 10:20357-20374, 2022.

K. Brown R. Barcia and R. Osowski. Ibm : Microservices point
of view. https://www.ibm.com/downloads/cas/fORNMYNRW [2022-09-
21],2018.

Chris Richardson. Choosing a microservices deployment strategy,
2016.

Manish Saraswat and RC Tripathi. Cloud computing: Comparison
and analysis of cloud service providers-aws, microsoft and google.
In 2020 9th International Conference System Modeling and Advance-
ment in Research Trends (SMART), pages 281-285. IEEE, 2020.
Erina Fika Noviani, Bayu Kembara, Bakti Anugrah Yudha
Pratama, Dyah Ayu Permata Sari, Ary Mazharuddin Shiddiqi, and
Bagus Jati Santoso. Performance analysis of aws and gcp cloud
providers. In 2022 IEEE International Conference on Cybernetics and
Computational Intelligence (CyberneticsCom), pages 236-241. IEEE,
2022.

Frangois Rouxel. A new way of deploying a microservice in AWS
— linkedin.com. https://www.linkedin.com/pulse/new-way-
deploying-microservice-aws-fran2021. [Accessed 29-Sep-2022].
Hamzeh Khazaei, Cornel Barna, Nasim Beigi-Mohammadi, and
Marin Litoiu. Efficiency analysis of provisioning microservices. In
2016 IEEE International conference on cloud computing technology and
science (CloudCom), pages 261-268. IEEE, 2016.

Desheng Liu, Hong Zhu, Chengzhi Xu, Ian Bayley, David Light-
foot, Mark Green, and Peter Marshall. Cide: An integrated devel-
opment environment for microservices. In 2016 IEEE International
Conference on Services Computing (SCC), pages 808-812, 2016.
Shimon Ifrah. Deploy a containerized application with amazon
eks. In Deploy Containers on AWS, pages 135-173. Springer, 2019.
Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonga, James Lewis,
and Stefan Tilkov. Microservices: The journey so far and chal-
lenges ahead. IEEE Software, 35(3):24-35, 2018.

Philipp Leitner, Jiirgen Cito, and Emanuel Stockli. Modelling and
managing deployment costs of microservice-based cloud applica-
tions. In Proceedings of the 9th International Conference on Utility and
Cloud Computing, pages 165-174, 2016.

Maria Fazio, Antonio Celesti, Rajiv Ranjan, Chang Liu, Lydia
Chen, and Massimo Villari. Open issues in scheduling microser-
vices in the cloud. IEEE Cloud Computing, 3(5):81-88, 2016.

Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano,
Lorena Salamanca, Rubby Casallas, and Santiago Gil. Evaluating
the monolithic and the microservice architecture pattern to deploy
web applications in the cloud. In 2015 10th Computing Colombian
Conference (10CCC), pages 583-590. IEEE, 2015.

Nabor C Mendonga, Craig Box, Costin Manolache, and Louis
Ryan. The monolith strikes back: Why istio migrated from mi-
croservices to a monolithic architecture. IEEE Software, 38(05):17—
22,2021.

Lorenzo De Lauretis. From monolithic architecture to microser-
vices architecture. In 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pages 93-96. IEEE,
2019.

Joydip Kanjilal. Deployment patterns in microservices architec-
ture. Developer.com, Sep 2022.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

8

Satish Narayana Srirama, Mainak Adhikari, and Souvik Paul.
Application deployment using containers with auto-scaling for
microservices in cloud environment. Journal of Network and Com-
puter Applications, 160:102629, 2020.

Docker. Docker container. https:/ /www.docker.com/resources/what-

container/. [Accessed 12-Oct-2022].

Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, and Vincent
Emeakaroha. A preliminary review of enterprise serverless cloud
computing (function-as-a-service) platforms. In 2017 IEEE In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom), pages 162-169, 2017.

Facebook. React js. https://reactjs.org/. [Accessed 12-Oct-2022].
Gilad David Mayaan. Reasons to build microservices with
nodejs. https://bambooagile.eu/insights/microservices-node-
js/, 2022. [Accessed 12-Oct-2022].

Benjamin Anderson and Brad Nicholson. Sql vs. nosql databases:
What's the difference. IBM [online]. Dostupno na: https://www. ibm.
com/cloud/blog/sql-vsnosql [28. 7. 2021.], 2021.

Dongming Guo and Erling Onstein. State-of-the-art geospatial
information processing in nosql databases. ISPRS International
Journal of Geo-Information, 9(5):331, 2020.

Benymol Jose and Sajimon Abraham. Exploring the merits of
nosql: A study based on mongodb. In 2017 International Conference
on Networks Advances in Computational Technologies (NetACT),
pages 266271, 2017.

APPENDIX A

ARCHITECTURE COMPARISON

Feature

Desktop Apps

Cloud Apps

Architecture

Requires development for various platforms;
environment-dependent

Runs in user’s web browser;
environment-independent

Scalability

Has extra development overhead based on
what operating system it is being used with

Access to features are
consistent and equal for all
users resulting in faster
scalability for future

Security

Less prone to cyber attacks

More prone to cyber attacks

Ease of Use

Due to inconsistencies, they may behave
differently on different operating systems.

Multi-tenancy is hard to achieve.

Since they are hosted in a
remote server accessed via
browsers, all users have the
same experience.

Multi-tenancy is supported.

Cost

Can be more expensive to develop and
maintain in the long-run.

Also requires on-site engineers to help install
and maintain the software.

Can be cheaper to build and
maintain in the long run.

Since the software is
maintained in remote servers,
maintenance costs are
reduced.

Fig. 12. Architecture Table

